If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-4x=39
We move all terms to the left:
2x^2-4x-(39)=0
a = 2; b = -4; c = -39;
Δ = b2-4ac
Δ = -42-4·2·(-39)
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{82}}{2*2}=\frac{4-2\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{82}}{2*2}=\frac{4+2\sqrt{82}}{4} $
| 3x-3=-6-8x-12 | | (5a+12)=(9a-12) | | 12x-2x=0 | | c=2c–4 | | c=2c–4;8 | | -5+2(7-6x)=81 | | (5+2x)+(4x+1)=180 | | -3(7x-5)-2x=-100 | | -120=-7(-2m+4)+6 | | -4(3x-8)=92 | | -7(x-8)=96 | | F=9/4(n-1) | | 1/x+1/x=3 | | 92=-4(1-3n) | | 8(6n-2)=176 | | 7(-3-6n)=105 | | 4(6n+5)=188 | | 3(q-5)-2(q=5) | | 81=-5+2(7-6x) | | -8(1-8k)=-328 | | 2/3(x+36)=73 | | 1+3r=5r+7 | | k+8-3k=20 | | k-1-4k=5 | | 13=-3k+5-5k | | 20=k+8-3k | | 5-4r+6=-17 | | 8x+15=5x-11 | | 8+p-8p=15 | | x1+x2+x3= | | -17=5-4r+6 | | x1.x2+x1.x3+x2.x3= |